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A New Horizon in Data-Driven Materials Research 

Unveiling Scaling Laws Bridging Extensive Computational 
Databases and Limited Experimental Data 

 The research group at the ISM-MCC Frontier Materials Design Laboratory (a joint research 
division of Mitsubishi Chemical Corporation (MCC) and the Institute of Statistical Mathematics 
(ISM)) has discovered a phenomenon known as the "scaling law*a of Sim2Real transfer 
learning*b" in the integrated analysis of large-scale computational materials property 
databases and experimental data, in collaboration with research groups from the National 
Institute for Materials Science (NIMS). 

In materials research, the development of extensive computational materials property 
databases generated through physical simulations is progressing to address the challenge of 
limited experimental data. Notably, it has been shown that models pre-trained on extensive 
computational databases can achieve predictive performance unattainable through direct 
learning, when fine-tuned with limited experimental data. Such integrated analysis is referred 
to as Sim2Real transfer learning. 

This study demonstrated that in Sim2Real transfer learning of data-driven materials 
research, the performance of predictive models fine-tuned using experimental data improves 
monotonically according to a power law scaling as the size of the computational database 
increases. The existence of scaling laws in transfer learning using materials computational 
databases has been empirically and systematically validated for the first time. Furthermore, it 
was confirmed that the computational database for polymer materials developed by the same 
group exhibits strong scaling for various downstream tasks in real-world applications.  

The scaling strength serves as a quantitative measure to assess the future value of the 
database. Analyzing scaling behavior enables us to estimate the amount of data required for 
a model to reach a desired performance, as well as the potential upper limit of that 
performance. Furthermore, the analysis of scaling laws leads to strategic planning for data 
platform development and the optimization of data production protocols in materials 
development projects. 

These research findings were published in npj Computational Materials on May 24, 
2025(URL=https://doi.org/10.1038/s41524-025-01606-5). 
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Research Content 

In data-driven research, the most crucial resource is data. However, compared to AI-
advanced fields such as natural language processing, computer vision, biology, and medicine, 
the data resources in materials research are extremely limited. To overcome this barrier, 
materials researchers have utilized physical simulations, such as first-principles calculations*c 
and molecular dynamics simulations*d, to construct extensive computational materials 
databases. In the field of inorganic materials, pioneering efforts like Materials Project1 have 
led to the development of computational materials databases that span the entire periodic 
table, including AFLOW2, OQMD3, GNoME4, and OMat24 dataset5. In the field of polymer 
materials, the research group at ISM has developed RadonPy, a software platform that fully 
automates computational experiments on polymer materials. They have formed an industry-
academia consortium involving two national institutes, eight universities, and 37 companies, 
collaborating on the joint development of one of the world's largest polymer properties 
databases6. Furthermore, in collaboration with MCC, ISM has established the "ISM-MCC 
Frontier Materials Design Laboratory," focusing on automating quantum chemistry calculations 
and jointly developing a large-scale database that comprehensively evaluates the miscibility 
between polymer materials and solvent molecules7. 

In materials research, utilizing techniques like transfer learning integrates vast 
computational data with limited experimental data to enhance model predictive performance. 
For instance, models pretrained using extensive computational materials databases are fine-
tuned for real-world prediction tasks using limited experimental data. Models derived from such 
Sim2Real transfer learning are known to exhibit superior predictive capabilities compared to 
those trained solely on experimental data. Through practical applications in materials 
development, the group has demonstrated that transfer learning is a powerful approach to 
overcoming the limitations posed by scarce experimental data8,9. 

In this study, the group demonstrated that scaling laws for Sim2Real transfer learning hold 
across various tasks in materials research (Figure 1). A joint research team led by Professor 
Kenji Fukumizu of ISM and Preferred Networks, Inc. had previously shown the existence of 
scaling laws in their theoretical work, and validated their applicability in Sim2Real transfer 
learning for computer vision10. According to this theory, the predictive performance of fine-
tuned models on experimental properties improves monotonically with the size 𝑛𝑛 of the 
computational database, following a power law relationship: prediction error =  𝐷𝐷𝑛𝑛−𝛼𝛼 + 𝐶𝐶. A 
database with a larger decay rate 𝛼𝛼 and a smaller transfer gap (𝐶𝐶) is considered ideal. The 
transfer gap represents the performance improvement limit attainable through database 
expansion and serves as a key indicator for the future potential of computational property 
databases. 

This study also confirmed that Sim2Real transferred models derived from the RadonPy 
database and the polymer miscibility database, both developed by the group, exhibit strong 
scaling across various experimental properties. Some of the experimental data were provided 
by the PoLyInfo database development team at NIMS11. Computational property databases 
with broad transferability and strong scalability are desirable for addressing extensive real-
world prediction tasks. While various computational property databases have been developed, 
no prior studies have quantitatively demonstrated their utility from the perspective of scaling 
laws. This study highlighted that strong scalability in transfer learning for diverse real-world 
systems can serve as a key indicator of the utility of computational property databases. 

Analyzing scaling behavior offers several practical benefits. It enables the estimation of the 
amount of data required to achieve a target accuracy and the attainable performance limits. 



Additionally, when scaling behavior converges, it allows for informed decisions to halt further 
data production and reallocate computational resources to other projects. Furthermore, this 
study demonstrated that it is possible to formulate experimental plans and determine the 
optimal allocation of resources between real-world experiments and computer simulations 
based on observed scaling behaviors. 

 
Future Outlook 

One of the critical milestones in data-driven materials research is establishing scalable and 
transferable data production protocols and analytical workflows that enable effective transfer 
learning (Figure 2). In many target domains, it is challenging to accumulate the data required 
for data-driven research. This tendency becomes more pronounced as we approach advanced 
research areas. Therefore, selecting source domains capable of producing large volumes of 
data, such as computational experiments, and bridging the gap between the source and target 
domains using machine learning is an increasingly important approach. In this context, it is 
crucial to design workflows such that as the data from the source domain increases, predictive 

Figure 1: Successfully observed the scaling law for Sim2Real transfer learning. 

Figure 2: Data platform development strategy based on the scaling law of Sim2Real transfer learning. 



performance in the target domain scales accordingly. Conversely, exploring target domains 
that can benefit from transfer learning from source domain databases is equally important. 

Note that the concepts of Sim2Real transfer learning and scaling laws are not limited to 
computational databases; they can be applied to the development of any database. Building 
foundational data through high-throughput data production processes and leveraging machine 
learning to bridge the gap between these foundational data and advanced research domains 
with lower data production efficiency provides a scalable and effective strategy for data-driven 
materials research. 

This study has established design guidelines for the development of databases in the 
RadonPy project and the integration of quantum chemical calculations and deep learning for 
building solubility prediction models of polymer-solvent systems. Moving forward, we plan to 
continue data production while improving the predictive performance of transfer models in 
downstream tasks. 
 
Publication 
Title:      Scaling law of Sim2Real transfer learning in expanding computational materials 

databases for real-world predictions 
Authors:   Shunya Minami, Yoshihiro Hayashi, Stephen Wu, Kenji Fukumizu, Hiroki 

Sugisawa, Masashi Ishii, Isao Kuwajima, Kazuya Shiratori, Ryo Yoshida 
Journal:    npj Computational Materials 11, 146 
DOI:      https://doi.org/10.1038/s41524-025-01606-5 
 
Acknowledgements 

This research was partially supported the Ministry of Education, Culture, Sports, Science 
and Technology (MEXT) "Fugaku" Program for Promoting Research to Accelerate Scientific 
Breakthroughs (hp210264), as well as the Japan Science and Technology Agency (JST) 
CREST projects (JPMJCR19I3, JPMJCR22O3, JPMJCR2332). We also express our gratitude 
to Dr. Masashi Ishii and Mr. Isao Kuwajima of the Technical Development and Shared Facilities 
Division at NIMS for providing the polymer property database PoLyInfo. 
 
References 
1) Jain et al., The Materials Project: A materials genome approach to accelerating materials 

innovation. APL Mater 1, 011002 (2013). https://doi.org/10.1063/1.4812323 
2) Curtarolo et al., AFLOW: An automatic frame-work for high-throughput materials discovery. 

Comput Mater Sci 58, 218–226 (2012). https://doi.org/10.1016/j.commatsci.2012.02.005 
3) Kirklin et al., The Open Quantum Materials Database (OQMD): assessing the accuracy of 

DFT formation energies. npj Comput Mater 1, 15010 (2015). 
https://doi.org/10.1038/npjcompumats.2015.10 

4) Merchant et al., Scaling deep learning for materials discovery. Nature 624, 80–85 (2023). 
https://doi.org/10.1038/s41586-023-06735-9 

5) Barroso-Luque et al., Open materials 2024 (omat24) inorganic materials dataset and 
models. arXiv preprint arXiv:2410.12771 (2024). 
https://doi.org/10.48550/arXiv.2410.12771 

6) Hayashi et al., RadonPy: automated physical property calculation using all-atom classical 
molecular dynamics simulations for polymer informatics. npj Comput Mater 8, 222 (2022). 
https://doi.org/10.1038/s41524-022-00906-4 

7) Aoki et al., Multitask machine learning to predict polymer–solvent miscibility using Flory–
Huggins interaction parameters. Macromolecules 56, 5446-5456 (2023). 
https://doi.org/10.1021/acs.macromol.2c02600 

https://doi.org/10.1038/s41524-025-01606-5
https://doi.org/10.1063/1.4812323
https://doi.org/10.1016/j.commatsci.2012.02.005
https://doi.org/10.1038/npjcompumats.2015.10
https://doi.org/10.1038/s41586-023-06735-9
https://doi.org/10.48550/arXiv.2410.12771
https://doi.org/10.1038/s41524-022-00906-4
https://doi.org/10.1021/acs.macromol.2c02600


8) Wu et al., Machine-learning-assisted discovery of polymers with high thermal conductivity 
using a molecular design algorithm. npj Comput Mater 5, 66 (2019). 
https://doi.org/10.1038/s41524-019-0203-2 

9) Yamada et al., Predicting materials properties with little data using shotgun transfer 
learning. ACS Cent Sci 5, 1717-1730 (2019). https://doi.org/10.1021/acscentsci.9b00804 

10) Mikami et al., A scaling law for syn2real transfer: How much is your pre-training effective? 
Machine Learning and Knowledge Discovery in Databases, 477–492 (2023). 
https://doi.org/10.1007/978-3-031-26409-2_29 

11) Ishii et al., NIMS polymer database PoLyInfo (I): an overarching view of half a million data 
points. STAM-M 4, 2354649 (2024). https://doi.org/10.1080/27660400.2024.2354649 

 
Terminology 
*a) The scaling law of AI is an empirical law that the performance of the accuracy of a machine 
learning model, e.g. prediction accuracy, improves according to the power law as the amount 
of training data increases. 
*b) Prediction of experimental properties by the model trained by adding experimental data to 
a model pre-trained by computational database. 
*c) A method to theoretically analyze the electronic structure, energy, reactivity, etc. of 
materials based on the principles of quantum mechanics. 
*d) A method to calculate the trajectory of atoms and molecules based on Newton’s equations 
of motion. The interaction between particles is represented by potential functions. Based on 
this method, physical properties such as structural change, diffusion and heat conduction of 
materials are analyzed on an atomic scale. 
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